
MOBILE
BANKING APP

SECURITY
RESEARCH

2025

2025

TABLE OF CONTENTS

01

2025 MBASR

Exposure

Applications Overview

Technical Architecture

Features and Capabilities

Security Challenges and Vulnerabilities

Banking App Attack Surface

Backend Infrastructure

Emerging Trends in Mobile Banking App Security

Introduction

Case Study – ToxicPanda Banking Trojan

Context

How ToxicPanda Works

Command-and-Control Infrastructure & Command Set

Conclusion

13

4

6

7

14

10

8

20

3

22

23

24

26

27

Excecutive Summary 2

Executive
Summary

02

Mobile banking is integral to modern finance

but remains a significant cyber risk vector.

Despite industry improvements like

biometric adoption and frequent updates,

most apps display real-world, exploitable

vulnerabilities: hardcoded secrets, outdated

dependencies, insecure configurations, and

excessive permissions. Accelerating threats,

notably the AI-driven ToxicPanda Trojan,

demonstrate that traditional defenses are

no longer sufficient. A holistic, proactive

security strategy is now urgent to protect

user trust and institutional integrity.

2025 MBASR

2025 MBASR

Mobile banking has become the beating heart

of everyday finance, offering convenience,

speed, and reach to millions worldwide. Yet,

beneath this seamless experience runs a

persistent undercurrent of security

challenges.

Research in 2024 revealed a troubling reality:

a significant portion of banking apps in North

America had not seen updates in two years or

more, exposing users and financial

institutions to known vulnerabilities. The

assumption that established banks ensure

digital safety does not always hold true.

Surveys spanning hundreds of mobile banking

apps found that nearly all failed to meet key

industry standards for security, often

harboring hardcoded credentials and weak

backend protections. These oversights are

not merely technical—they carry real danger.

Mobile banking apps guard more than just

funds; they handle identities, personal

histories, and sensitive transactions. A single

flaw can open the door to data breaches,

financial theft, and a loss of trust that is

difficult to restore. In this landscape, the

commitment to rigorous app security, from

foundational coding to ongoing oversight,

has never been more critical.

03

Introduction

Facts:

Nearly 1 in 10 apps hadn’t been

updated in two years.

Over 50% of apps contain hardcoded

cloud credentials, exposing backend

systems and personal data.

Most traditional banking apps still fail

core security standards (e.g., OWASP

MASVS).

04

Most apps are still actively maintained,

with 94.7% of iOS apps and 88.8% of

Android apps having had a version

released in the last six months, while

only 1% of the applications having their

latest version over a year old. However,

frequent updates do not necessarily

reflect security awareness. Many may

focus on adding features or UX changes

rather than addressing security flaws.

The real concern lies in whether these

updates actively improve the app’s

resilience to evolving cyber threats.

Many banking apps have been around for

over 10 years. On iOS, about 25% were

released between 2008 and 2011, and

another 22% between 2011 and 2014.

On Android, the numbers are similar —

around 27% came out between 2010 and

2013, and 25% between 2013 and 2016.

This shows that many apps have been in the

market for a long time, which is good for

stability. But it also creates a big security

challenge: maintaining old applications.

Old codebases that weren’t built with

today’s security in mind need regular

updates to stay safe from modern cyber

threats.

Applications Overview

Figure 2: Android application release dates

Figure 1: iOS application release dates

17 Oct 2008 - 03 Jul 2011
25.3%

03 Jul 2011 - 18 Mar 2014
22.4%

18 Mar 2014 - 01 Dec 2016
15.3%

01 Dec 2016 - 17 Aug 2019
14.1%

17 Aug 2019 - 02 May 2022
12.9%

May 2022 - 15 Jan 2025
10%

25 May 2010 - 19 Apr 2013
27.4%

19 Apr 2013 - 13 Mar 2016
25.5%

13 Mar 2016 - 05 Feb 2019
20.8%

05 Feb 2019 - 30 Dec 2021
16%

30 Dec 2021 - 23 Nov 2024
10.4%

2025 MBASR

05

On iOS, the largest share of apps (43.3%) falls

into the 5-164 MB range, with a significant

proportion (33.3%) in the 164-336 MB

category. Android apps show a tendency

towards smaller sizes,

These numbers show that banking apps are

stable and still getting updates. But keeping

old apps safe is hard, especially if they

weren’t built with today’s security in mind.

Figure 5: iOS application size distribution

5-164 MB
43.3%

164-336 MB
33.3%

336-548 MB
19.3%

548-740 MB
4.1%

Figure 6: Android application size distribution

74-111 MB
30.6%

13-74 MB
29.6%

149-202 MB
16.3%

111-149 MB
13.3%

202-296 MB
9.2%

Figure 3: iOS application current release date

23 Feb 2025 - 12 Aug 2025
95.9%

06 Sep 2024 - 23 Feb 2025
2.9%

Figure 4: Android current release date

05 Apr 2025 - 11 Aug 2025
88.8%

29 Nov 2024 - 05 Apr 2025
6.4%

with the most common ranges being

74-111 MB (30.6%) and 13-74 MB

(29.6%). The size distribution shows

that iOS apps tend to be larger, while

Android apps are generally smaller.

 As apps get bigger and more complex,

making sure they stay secure is more

important than ever.

2025 MBASR

06

The scans show a clear use of common

programming languages, native code,

and well-known libraries across mobile

apps.

In terms of languages, Kotlin was used

in over 61% of Android apps, while

Objective-C appeared in over 65% of

iOS apps. Native C/C++ code was

found in more than 72% of apps.

Technical Architecture

Tech Stacks & Libraries

For libraries, zlib was seen in almost 55%

of apps for data compression. OpenSSL

was found in over 51% of apps, helping

secure network communication. SQLite,

used for local data storage, was present

in over 35% of apps. As for backend

services, Firebase (com.google.firebase)

appeared in 34% of apps.

Figure 7: Number of applications by fingerprint

Applications

0 20 40 60 80

c_plus_plus
kotlin

zlib
openssl

libpng
libjpeg

opencv
java

sqlite
com.google.firebase

objective_c
jquery

com.google.android.datatransport
com.google.android.gms

com.google.android.material |
com.google.gson

okhttp3
com.google.android.play
com.google.common.util

libc++_shared.so
okio

libimage_processing_util_jni.so
androidx.lifecycle

androidx.versionedparcelable
retrofit2

2025 MBASR

This section provides an

examination of the technical

composition of mobile banking

applications, with a specific

focus on the frameworks,

libraries, and features that

collectively determine their

capabilities and attack surface..

07

Features and
Capabilities

Figure 8: Distribution applications by feature

CA
M
ER
A

BI
OM
ET
RI
C

M
ED
IA
_F
ILE
S

CO
NT
AC
TS

AN
AL
YT
IC
S_
LIB
RA
RY

IN
TE
RN
ET

W
IFI

AU
TH
EN
TI
CA
TI
ON

GE
OL
OC
AT
IO
N

BL
UE
TO
OT
H

NF
C

CA
LL
_L
OG
S

TR
AC
KI
NG

AD
S_
LIB
RA
RY SM

S

HE
AL
TH

0

50

100

150

200

250

300

350

2025 MBASR

Banking apps rely heavily on native mobile features to provide a secure and smooth

user experience. Biometric authentication, used in over 65% of apps, is a key feature

for secure login and identity checks. Analytics libraries appear in over 45% of apps,

showing a clear focus on tracking user behavior. Few apps include Advertising libraries,

and a mere 1% possess user-tracking capabilities. This suggests that most applications

prioritize user privacy, avoiding tracking practices. Interestingly, the rare presence of

Advertising libraries raises questions, as monetization through ads is generally

irrelevant in the financial sector, while the appearance of Health-related features is

also unusual within the context of banking applications.

08

A look at the distribution of

backends by location shows that,

although most banking apps are not

from the US, they almost all

communicate with servers based

there. This heavy reliance on US-

based infrastructure creates a single

point of failure, any breach or

outage affecting major US providers

could impact multiple banks. It also

means that customer data falls

under US regulations.

This suggests that iOS apps tend to

rely on fewer backend services, which

may reduce complexity. In contrast,

Android apps often use more

backends, which may require more

careful security management.

The scans also showed some interesting

differences in how Android and iOS apps

use backends. On Android, about 62% of

apps connect to 19 or fewer backends,

and around 23% use between 19 and 38.

On the other hand, most iOS apps—

about 78%—connect to just 2 or fewer

backends, and another 16% use between

2 and 5.

Backend Infrastructure

Figure 9: iOS Number of backends by application

Figure 10: Android Number of backends by application

0-2
78.2%

2-5
15.9%

5-77
5.9%

0-19
61.6%

19-38
23.2%

38-57
11.2%

57-204
4%

2025 MBASR

09

Figure 11: Distribution of backends by country

Distribution of Backends by Country

0 500 1000 1500 2000 2500 3000

United States
Canada

South Korea
Ireland

Germany
France

Singapore
The Netherlands

Australia
Netherlands

Hong Kong
United Kingdom

India
Switzerland

Belgium
China
Brazil

Saudi Arabia
Turkey
Japan

Sweden
Italy

Taiwan
Spain

Colombia
Luxembourg

Czechia
South Africa

Indonesia
UAE

Mexico
Egypt

Vietnam
Poland

Argentina
Jordan

Malaysia
Finland

Qatar
Belarus

Denmark
Nigeria
Ghana

Croatia
Greece
Austria
Russia

Morocco
Portugal

Bahrain

2025 MBASR

2025 MBASR
10

Biometric-related permissions such as

USE_FINGERPRINT and

USE_BIOMETRIC are prominently used

by nearly 80% of applications, reflecting

the industry’s shift toward stronger,

user-friendly authentication methods.

Similarly, CAMERA and

ACCESS_FINE_LOCATION are widely

used, supporting features like mobile

check deposits, QR code scanning, and

fraud prevention based on location

patterns. Other permissions requested

by some Android apps are difficult to

justify, such as

FOREGROUND_SERVICE_CAMERA,

FOREGROUND_SERVICE_MICROPHON

E, and DISABLE_KEYGUARD, which

could pose potential risks to user safety

and confidentiality.

The security of a mobile application is

directly related to its attack surface,

which is defined by the number and

nature of its entry points and

permissions. The analysis of the banking

app ecosystem reveals the following key

findings regarding potential

vulnerabilities. The most widely

requested permissions among Android

banking apps are consistent with core

app functionality.

ACCESS_NETWORK_STATE and

INTERNET are nearly universal, as they

are essential for enabling network

connectivity and online banking

operations. POST_NOTIFICATIONS

ranks high, likely due to its role in real-

time alerts for transactions, login

attempts, and account changes.

WAKE_LOCK is also common.

Banking App Attack
Surface

11

Distribution of apps by permissions

0.0 0.2 0.4 0.6 0.8 1.0

ACCESS_NETWORK_STATE

INTERNET

WAKE_LOCK

POST_NOTIFICATIONS

RECEIVE

USE_FINGERPRINT

CAMERA

VIBRATE

ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

USE_BIOMETRIC

ACCESS_WIFI_STATE

WRITE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE

BIND_GET_INSTALL_REFERRER_SERVICE

READ_CONTACTS

READ_PHONE_STATE

FOREGROUND_SERVICE

RECEIVE_BOOT_COMPLETED

AD_ID

RECORD_AUDIO

READ_SETTINGS

QUERY_ALL_PACKAGES

WRITE_SETTINGS

NFC

For iOS, Camera is present in nearly 95% of apps, likely used for mobile check deposits,

ID verification, and QR code scanning. Face ID was found in 80%, supporting biometric

login and. Location When In Use is widely requested, suggesting its use in fraud

detection. Permissions like Bluetooth Always, User Tracking, and Speech

Recognition are seen in a smaller proportion of apps. These could enable features such

as in-branch device connectivity, analytics, or accessibility enhancements, but they also

raise potential privacy concerns and must be implemented transparently.

2025 MBASR

Figure 12: Distribution of apps by permission

12

Camera

Face ID

Photo Library

Locatio
n W

hen In Use

Contacts

Microphone

Photo Library Add

Locatio
n Always And W

hen In Use

Locatio
n Always

Calendars

Bluetooth Always

User T
racking

Bluetooth Perip
heral

Speech Recognitio
n

NFCReader
Siri

Locatio
n

Apple Music
Motio

n

Calendars Full A
ccess

Local N
etwork

Reminders

Calendars W
rite

 Only Access

Health
 Share

Health
 Update

Documents Folder

Microphone Add

User N
otific

atio
ns

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: iOS – Permissions by number of applications

2025 MBASR

Such requests may indicate potential overreach or raise user privacy concerns. Banking

applications should absolutely request the minimum amount of permissions required to

function and keep customers secured. On iOS also, we found a small share of

applications requesting unusual permissions with no clear banking relevance, such as

Apple Music, Health Share, Health Update, Bluetooth Always, and Bluetooth Peripheral.

On iOS also, we found a small share of applications requesting unusual permissions

with no clear banking relevance, such as Apple Music, Health Share, Health Update,

Bluetooth Always, and Bluetooth Peripheral.

13

The analysis highlights a significant

attack surface within applications. On

Android, the data shows that most

banking apps use many background

services, with nearly 40% having 11 to

20 and 16% having 21 to 30. Only

13.6% have fewer than 10, while 24%

don’t use any. More services can offer

extra features but also increase

security risks if not properly protected.

This indicates that the extensive use of

background services significantly

expands the attack surface of many

Android banking apps, requiring

stronger oversight and stricter security

hardening to reduce exposure.

Exposure

11-20 0 21-30

1-10 31-41

11-20 0 21-30 1-10 31-41
0.0

0.1

0.2

0.3

0.4

0 1-10 11-20

21-30 31-32

0 1-10 11-20 21-30 31-32
0.0

0.1

0.2

0.3

0.4

2025 MBASR

More services can offer extra features

but also increase security risks if not

properly protected. This highlights the

need to carefully check and secure

service components in banking apps.

Figure 15

Figure 14

The conducted scans combine static,

dynamic, and behavioral analysis techniques

to identify potential security weaknesses.

Static analysis involves a deep inspection of

an application's files and codes without

executing the application itself. This

technique is instrumental in identifying

common security vulnerabilities such as:

Configuration flaws, such as a debug

mode in the Facebook SDK that could

leak session information.

Supply chain vulnerabilities, including

outdated dependencies and critically

dependency confusion leading to full

application compromise.

Errors like SQL injection or file path

traversal.

Validated hardcoded secrets and weak

encryption practices.

Ostorlab's in-house static analysis engine

plays a central role in this process. It is

specifically designed to analyze mobile

application code and leverages both

heuristic techniques and a large database of

rules for matching vulnerable patterns to

detect a wide range of vulnerabilities.

14

Security Challenges
and Vulnerabilities

About the Analysis:

2025 MBASR

In parallel, dynamic analysis provides a

runtime perspective on the

application's security. Using Ostorlab’s

MonkeyTester to run and drive the

application in a controlled environment

while observing its behavior. During

dynamic analysis, the scanner can

identify vulnerabilities that only

manifest when the app is active, such

as:

API hooking and automated

interactions to enhance coverage.

Backend interception to identify known

vulnerabilities and fuzz-testing for

potential unknown issues like SQL

injection (SQLi) and XML External Entity

(XXE) attacks.

With this, Ostorlab’s scanner runs a

holistic security assessment, covering

both latent code-level issues and

active runtime vulnerabilities that

could be exploited in a live

environment.

2025 MBASR
15

Figure 16: Leaked Google Cloud API Key

The scanning of banking apps reveals a concerning trend: The most common issue is

hardcoded secrets within applications. This includes API keys, tokens, and credentials

embedded directly in code or resource files. Such flaws expose banking infrastructure

to unauthorized access, credential stuffing, and service abuse, especially when apps are

reverse-engineered by attackers.

The second most found issue is the use of outdated vulnerable components. Over 46%

apps rely on dependencies known to have critical flaws, highlighting the persistent risks

posed by insecure supply chains.

Figure 17: zlib@1.2.8 vulnerable dependency

16

Distribution of apps by vulnerability

0 10 20 30 40 50 60 70

Hardcoded Secret

Vulnerable Component

Application checks rooted device

Biometric Authentication Bypass

Clear text HTTP request

OAuth Account Takeover

Cryptographic Vulnerability

2025 MBASR

Root detection checks were

implemented in more than 40% of

apps, suggesting that many

applications still rely on basic device

trust models.

Worryingly, biometric authentication

bypass vulnerabilities were found in

over 28% of apps, indicating

misconfigured or insufficiently secured

biometric flows.

Legacy issues like cleartext HTTP

requests persist in roughly 20% apps,

exposing user data in transit. This is

very worrisome in financial applications,

where transport-layer encryption is a

fundamental requirement.

Figure 18

Less prevalent but high-impact issues

include:

OAuth misconfigurations (around

15% of apps), enabling account

takeover via malicious redirects or

hijacked URI schemes.

Use of insecure cryptographic

algorithms (e.g., ECB mode, MD5,

static IVs) limited to a small number

of apps.

The dynamic scans lacked

authentication to the applications, so

any potential post-authentication

issues are not included in this report.

17

0-2 2-4 4-6 6-8 8-10 10-12

0-2 2-4 4-6 6-8 8-10 10-12
0

20

40

60

80

0-3 3-6 6-10 10-13 13-16 16-19

0-3 3-6 6-10 10-13 13-16 16-19
0

10

20

30

40

50

Figure 20: Distribution of Critical Vulnerabilities - Android

Figure 19: Distribution of Critical Vulnerabilities - IOS

2025 MBASR

The majority of both iOS and Android banking apps fall within the 0–2 critical

vulnerabilities range, indicating that many have a relatively low count of severe

issues, though the presence of even a single critical flaw in a banking app remains a

serious security concern. A small but concerning subset of apps containing 10 or

more critical vulnerabilities, some reaching up to 19.

2025 MBASR
18

Some banking apps exposed unnecessary

attack surfaces through unsafe exported

components, insecure register receivers,

and implicit PendingIntents. These

weaknesses may allow malicious

applications installed on the same device

to intercept sensitive tokens or initiate

unauthorized actions within the banking

app. These vulnerabilities represent a

persistent entry point for on-device

fraud and privilege escalation.

1. Application Surface Misconfigurations

Figure 21 : SQL injection vulnerability found through taint analysis

 The static taint engine also found

instances of SQL injection where

unsanitized user-controlled input is

passed into database queries,

potentially enabling unauthorized data

access or manipulation

2025 MBASR
19

The scanned banking apps revealed

serious backend weaknesses, including

Remote Command Execution (RCE)

and File Path Traversal, which can

grant attackers unauthorized access to

servers and sensitive customer

information. Directory listing and

publicly exposed Swagger or

GraphQL endpoints were found,

enabling attackers to enumerate

internal APIs and plan targeted

exploits. In several cases, credentials

exposed in logs posed an immediate

risk of backend compromise,

potentially allowing unauthorized

access to transaction processing or

account management systems.

Several apps Vulnerabilities were

found using cleartext HTTP

requests or susceptible to

HTTPS→HTTP downgrade attacks,

which could expose user credentials,

one-time passwords (OTPs), and

transaction details to interception.

Misconfigured TLS certificates

(expired, mismatched, or self-

signed) were also observed, creating

opportunities for Man-in-the-Middle

attacks. Furthermore, weak

encryption practices, including

insecure cipher suites and hashing

algorithms, weakened the

confidentiality and integrity of

sensitive banking data in transit.

4. Traffic & Encryption 2. Backend Vulnerabilities

Analysis uncovered widespread reliance

on outdated and vulnerable

dependencies, exposing banking apps to

known CVEs that could be exploited to

compromise authentication modules or

payment flows. Instances of dependency

confusion presented an opportunity for

attackers to introduce malicious code

during the build process. Additionally,

insecure object serialization and

prototype pollution flaws identified in

some apps could lead to remote code

execution or privilege escalation,

enabling unauthorized financial

operations or customer data exfiltration.

3. Supply Chain Vulnerabilities 5. Authentication & Session Management

The scans identified flaws such as OAuth

account takeover via custom scheme

hijacking, intent redirection, and

biometric authentication bypasses that

could lead to unauthorized access to

customer accounts and fraudulent

transactions. Hardcoded keys and

tokens were found in several apps, while

improper session handling increased the

risk of hijacking active banking sessions.

Tapjacking vulnerabilities could further

trick users into unknowingly authorizing

high-value transfers.

2025 MBASR
20

Mobile banking is rapidly evolving, driven by advances in technology, shifts in

customer expectations, and expanding digital ecosystems. While these innovations

bring greater convenience and personalization, they also expand the threat

landscape. Cyberattacks are evolving at a similar pace, often exploiting the same

technologies that enable progress. From integrating financial services into non-

banking platforms to adopting AI-driven fraud detection, banks must balance

innovation with robust safeguards to protect user trust and meet regulatory

demands.

Emerging Trends in
Mobile Banking App
Security

2025 MBASR
21

Security Built into Development

Mobile banking apps now integrate

security checks into every step of the

development process (DevSecOps).

This includes automated scans for

vulnerabilities, following secure

coding standards (e.g., OWASP

Mobile Top 10), and using AI tools to

find bugs early.

Banking services are increasingly

integrated into third-party

platforms, whether through

regulated open banking APIs or

embedded directly into non-

financial apps like e-commerce,

ride-hailing, or social media. While

this creates convenience and new

service opportunities, it also

widens the attack surface and

increases data privacy risks. Both

regulated and unregulated

integrations require strong

security controls, strict third-party

vetting, and robust consent

management to prevent breaches

and misuse.

Banking Beyond Traditional Apps

Biometrics (like fingerprints or face

scans) and blockchain can improve

security but also introduce new

problems. If biometric data is stolen, it

cannot be changed, and blockchain

systems can still have weaknesses in

how they’re built or integrated.

Biometrics & Blockchain Risks

Rise of Neobanks and Digital-Only
Financial Institutions

Neobanks are reshaping traditional

banking by operating entirely online

and challenging existing regulatory

frameworks. However, their fully

digital nature can introduce risks,

including compliance gaps, potential

impacts on financial stability, and

erosion of customer trust in the event

of technical failures or security

breaches.

AI in Banking Apps

Artificial intelligence can improve

banking services, but it also

introduces risks, such as biased

algorithms, unclear decision-

making, and the possibility of AI

systems being tricked or attacked.

Criminals are now using AI to power

more sophisticated attacks,

including deepfake voices and

videos to impersonate customers or

bank staff, bypassing traditional

verification methods.

Case Study –
ToxicPanda Banking
Trojan

22
2025 MBASR

23

Over the past decade, mobile malware has evolved from crude scams and adware
into sophisticated threats capable of performing credential theft, surveillance,
remote access, and unauthorized financial operations. In this shifting threat
landscape, banking trojans have emerged as one of the most damaging categories,
targeting both users and financial institutions through credential interception, SMS
hijacking, and app overlay attacks.

Context

ToxicPanda is a newly discovered

Android banking trojan identified by

Cleafy in late 2024. Its main goal is to

initiate money transfers from

compromised devices via account

takeover (ATO) using On-Device

fraud (ODF), and by leveraging

Android’s Accessibility Services to

bypass security controls, intercept

SMS messages and OTPs, and

manipulate banking apps in real time.

2025 MBASR

0 10 20 30 40 50 60

Italy

Portugal

Hong Kong

Spain

Peru

Figure 22: Victims' geographic distribution

The malware was first observed

targeting users in Europe and Latin

America, with 87.4 infected devices

reported across the provided

countries. Approximately 65.0% of

these were in Italy, followed by

21.4% in Portugal. While the

remaining share was distributed

across various countries. [Source:

Cleafy]

2025 MBASR
24

How Toxic Panda
Works

ToxicPanda’s primary goal is on-device

fraud (ODF), and it achieves this

through a combination of phishing

overlays and credential harvesting.

ToxicPanda disguises itself as a trusted

legitimate application such as Google

Chrome. Upon installation, the

malicious application requests the user

to enable Android’s accessibility

services. This gives the malicious app a

free pass to control the entire device.

Once accessibility privileges are

granted, It can:

Read and interact with screen

contents

Simulate user input (clicks, swipes)

Automatically grant itself additional

permissions without user

interaction

Silencing notifications

Perform overlay attacks

Next thing, the application updates the

settings, gives itself necessary

permissions and downloads resources

for its phishing overlays from the threat

actors' servers.

These overlays are identical to the

legitimate banking apps. The malware

maintains a local mapping of targeted

banking apps and associated phishing

templates. When the user opens a

banking app, the malware renders an

identical WebView allowing it to

capture user credentials which are

exfiltrated to the TAs servers.

Example of phishing UI’s identical to the

legitimate apps’ [Source: bitsight]

ToxicPanda also grants attackers’ remote

access to the infected device, enabling

them control of the device from any

location. Combined with credential theft,

OTP and message interceptions, plus

Remote control, threat actors can initiate

banking transactions on behalf of the

user without them noticing.

25

ToxoPanda also employs some

persistence actions to remain active

at all time: It re-registers itself on

BOOT_COMPLETED to auto-start

after device reboot, and actively

monitors the Accessibility Service

status and prompts the user to re-

enable it if disabled,

2025 MBASR

Figure 23: Example of phishing UI’s identical to the legitimate apps’ [Source: bitsight]

26

Primary C2 servers are hardcoded into

the malware, but they're hidden using

encryption and obfuscation so they’re not

easy to spot by analysts. But if these

servers were to be blocked or taken down,

the malware falls back to a Domain

Generation Algorithm (DGA) to create

new domains on the fly. Attackers can

register new domains from the same

pattern and the malicious app stays

connected.

Once connected, the infected device

receives commands in JSON format.

These are lightweight, easy to parse, and

customizable. ToxicPanda supports a

growing list of commands, which can be

updated as needed. Some of the main

ones include:

ToxicPanda’s command-and-control (C2)

system is the core of its remote

operations. Once the malware is installed

on a victim’s device, it connects to the

attacker’s infrastructure to receive

instructions, download updates, and send

stolen data.

Command-and-Control
Infrastructure &
Command Set

2025 MBASR

updatePageRule: Tells the malware

which apps to watch for and which

phishing overlay to show.

setDomain: Dynamically changes the

C2 endpoint.

openLayer: Triggers a WebView-

based overlay for a specific banking

app to phish credentials.

get_sms: Extracts and forwards all

incoming SMS messages (useful for

intercepting OTPs).

get_contacts: Dumps the user’s

contact list.

push_log: Sends logs of user

interactions, like inputs or accessed

apps.

startInject / stopInject: Controls

when and which injection or overlay

attack should run.

These commands give attackers full

remote control over the infected

device. They can launch phishing

screens, steal messages, harvest

credentials, and even silently

interact with banking apps to

perform fraud. All without alerting

the user.

2025 MBASR
27

The banking industry is clearly

investing in stronger defenses, but

sophistication on the attacker side is

growing just as fast—powered now

by AI, deepfakes, and advanced

malware.

What’s clear is this: security can no

longer be an afterthought or a

compliance checkbox. It must be

baked into the design, development,

and deployment of every banking

application. With regulatory pressure

mounting and user trust on the line,

the institutions that succeed will be

those that embrace a proactive,

holistic approach to mobile security.

Mobile banking stands as both the

dynamic heart of modern finance and its

front line of cyber risk.

Ostorlab’s analysis of over 500 mobile

banking apps paints a picture of a rapidly

advancing digital ecosystem that is both

deeply entrenched in daily financial life

and increasingly under threat.

While banks have made notable strides in

deploying secure, feature-rich apps, the

data shows that many still rely on

outdated libraries, weak encryption

practices, and exposed attack surfaces.

The vulnerabilities uncovered aren’t

theoretical—they’re real risks affecting

millions of users across platforms.Yet

amid the concern, there are signs of

progress. Frequent app updates, growing

adoption of biometric authentication,

hardware-backed security, and on-device

threat detection are all steps in the right

direction.

Conclusion

2025

